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To effectively learn the semantic difference between malware and malicious Android applications, it
is important to have use a good embedding technique the best reflect the semantic features in
application. In this case, we are using the graph-based semantic representation from SeGuard. The
goal of this project is to explore more advanced 

. The current approach is to use the concatenation of the node one-hot vector and
edge one-hot vector. 

 In this project, we
are seeking a solution that 

While node2vec is a general and flexible tool, we need to adjust the (hyper-)parameters so that it
works well for our purpose. 

Random Forest classifier cannot distinguish the difference between nodes that are closely
connected (few nodes in between) or loosely connected (a lot of nodes in between) using only
node and edge one hot encodings.
Using a node embedding tool, Node2Vec, we add a distance vector to featurization, which makes
an explicit difference between nodes that close to each other and nodes that are far away. With
this featurization, we are hoping to find some patterns of malicious behavior in Android malware.

Embedding Semantic Graph using Node
Distance for Malware Detection

Abstract

featurization techniques for embedding semantic
graphs into vectors

However, this approach does not consider the important topological information
about the difference in distance between nodes that are not directly connected.

concatenates node-one-hot vector, edge-one-hot vector and node
distance vector as the final feature vector.

Specifically, we are proposing a more sophisticated distance calculated using Node2Vec. Node2vec
maps each node to a vector in a given dimension that embeds the information about the node’s
neighborhood. For example, in our project, two closely adjacent nodes should have a small Cartesian
distance between their node2vec embeddings.  After transforming all the nodes in a graph into
vectors, we can calculate the Cartesian distance between each node vector, and use the
concatenation of the distance vector and one-hot vectors as the feature vector for the graph. The
advantage of this method is that it better quantifies the relationship between two nodes, and we think
that model will better know which certain API pattern identifies which type of Android malware.

The possible related parameters are: (1) dimension, (2) length of walk, (3)
number of walks, (4) return hyper-parameter and (5) input hyper-parameter.  By perturbing these
parameters, the distance calculated from the embeddings represents the distance on the original
graph. These parameters determines if the distance between nodes makes sense. In this work we will
empirically find a parameter set that results in embeddings that gives a more accurate classification.

Main Takeaways

Overview

https://snap.stanford.edu/node2vec/


1

2

3

4

5

6

7

8

9

10

(Definition) Semantic Graph: A graph in which each node represents a library method (API), and the
edge from one node u to another node v represents v depends on u, e.g. control-flow dependency or
data-flow dependency.

The most intuitive way to represent a graph is to use the node-one-hot vector and edge-one-hot
vector, and we call this approach as “previous approach”.  When we feed this kind of vectors in a

 the estimator cannot tell the difference between the following simplified
semantic-graph based on call-graph (Figure 1):

 transitively transitively 

def A():

  ...

  B(a)

  ...

def B(a):

  ...

  if(...):

    C(b)

  ...

...

Distances in Semantic Graph

Random Forest estimator,

 

Figure 1: Random Forest Tree cannot distinguish the
difference using only edge one-hot encoding

Clearly, method A called method F and method G called method I, but there is
a fundamental difference in these two situations.
Method A and method F are not strongly correlated, that is to say, calling method A does not
necessarily guarantee that method F is called. For example, in the code snippet below, method B only
calls method C if a certain condition is satisfied. Thus, method F will not be called in this situation.
However, the situation with G and I are very different. It is far more likely at runtime (since static call-
graph is imprecise) that if G is called, then I is called too. You could argue that G might also call I in a
certain condition, but the less intermediate nodes in between, the less likely that this situation shall
happen.  The design of our featurization is based on this assumption.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html


11

12

13

1

2

3

4

5

6

7

def E(d):

  F(e)

  ...

def G():

  ...

  H()

def H(): 

  ...

  I()

def I():

If we use the the previous featurization solution, Random Forest estimator 
. Thus, we propose to add a set of new features to the original

ones based on node distance. 
 represents the distance of every node to every other node in the data set on

this graph. 
In the example above, we can think of the distance between method  A and method F is

long, and the distance between method G and method I is short. 
Android applications of the same type tend to have similar patterns, in which a specific group of
methods have close connections with another group of methods. We believe the node distance vector
can capture these patterns, so that the downstream machine learning classifiers can take advantage
of these features.
The naive way to implement distance between nodes would be calculating minimum number of
edges between them (e.g. using Dijkstra algorithm). In this project, we propose to use node2vec, a
novel machine learning based solution, to calculate the embedding for the nodes, and then calculate
the Cartesian distance between nodes.

' ' ' '

' ' ' ' ' ' ' ' ' '

cannot explicitly
distinguish between these conditions

The node distance vector
In the context of an Android application, it means how strongly two methods are

correlated. 

Node Embedding using Node2Vec

Node2vec is a node embedding tool. It generates traces from random walks and then uses a word
embedding tool, word2vec, to generate the embedding of traces. For example, figure 2 represents a
semantic graph and one possible random walk starting from method A . The solid lines represent the
path of the walk, and the dash lines represent existing edges that are not visited by the walk. After
generating the random walk constrained by some parameters, node2vec feeds the walk: ([ A , C ,

G , I , D , E , F ]) to word2vec as if it was a sentence. 

https://snap.stanford.edu/node2vec/
https://radimrehurek.com/gensim/models/word2vec.html


Node2vec is flexible in a way which allows us to discover if a certain settings should improve the
performance of the model. One can adjust the parameters to control the walk. We selected 5 relevant
parameters:

 of the embedding vector, which determines the maximum amount of
features that can be encoded
walk length: . The longer the length,
with other conditions unchanged, the more likely that this walk is going to visit nodes that are far
away
number of walks: number of walks starting from per node, the more random walks are generated,
the less the bias and randomness is involved
return parameter (p): determines how often that a walk is going to return to the node it just
visited
in-out-parameter(q): determines if the walk tends to stay local or global. 

We normalize the distance between 0.0 to 1.0 to make it comparable with distances in other graphs.
To be more specific, we divide every node distance by the maximum distance in the graph. 

Node2Vec algorithm is stochastic: it might generate different embedding even using the same graph
and same hyper-parameters. We have tested this behavior on one simple graph in Figure 3:

 

Figure 2. A possible random walk on a semantic graph

dimension: the dimension

determines how many steps that a random walk should take

Note that
if a node does not exist in this graph, then the distances involving this node is set to 2.0, which means
that the connection between APIs that are not used is the weakest.

Node2Vec on Simple Graphs  



If we use Node2Vec to calculate d(A,B) for 10000 times, we get a different value every time. But it
is clearly centered around 1. 
Another graph we have tested is a single chain from node 0 (n ) to node 20 (n ) . That is, node 0 is
connected to node 1, node 1 is connected to node 2, and so on until node 20. 

Note that, here we are comparing two kinds of distances: (1) simple graph-theory distance and (2)
Cartesian distance using Node2Vec. We define simple graph-theory as the minimum number of
edges in a path between two nodes on the graph. For example, node 0 and node 1 has one edge in
between, their simple graph-theory distance is 1. Similarly, the simple graph-theory distance between
node 0 and node 20 is 20. Figure 5 illustrates the relationship between simple graph-theory and
Cartesian distance using Node2Vec. The x-axis represents different trials conducted in the

 

Figure 3. A simple graph  Figure 4. sample 10000 times of node2vec distance
between A, B in Figure 3

0 20

 

Figure 5. Distance between loosely connected nodes. 



experiment, and the y-axis represents the simple graph-theory. The color in each block represents the
corresponding Node2Vec Cartesian distance.
Although the distance is slightly different in each trial, the general pattern is observable: d(n ,n ) is
the smallest (darkest), d(n ,n ) is in between, and if the nodes are too far away from node 0, the
algorithm cannot distinguish them.

The original dataset contains 308 graphs in total (see table below):

0 1

0 5

Evaluation
Data Preparation 

label samples

benign ��

backdoor �

phishing �

warn_click_fraud �

block_phishing ��

warn_spyware ��

warn_hostile_downloader ��

warn_sms_fraud ��

block_trojan �

warn_trojan ��

block_hostile_downloader �

warn_toll_fraud �

warn_commercial_spyware �

warn_phishing �

block_backdoor �

warn_privilege_escalation �

warn_backdoor �

downloader �

trojan �

spyware �

jssmsers �

Lotoor �

gooddroid ��

ExploitLinuxLotoor �

TrojanSMS �



Every label that is not ‘benign’ implies that is is a malware. 

There are some labels in the dataset that have significantly small number of graphs. We merged
some labels in the dataset and removed the ones that have only 1 or 2 instances. Below is the
relabelled version of the original dataset:

The embedding generated by Node2Vec can be adjusted by several parameters. We 

Our goal is to select a set (or several sets) of parameters that best reflects the actual distribution of
distances between nodes. Node2Vec embeds nodes by feeding random walks to Word2Vec, and

 embeds information of words that appear in the same sentence. For example, if the
sentence pass in is ‘the bear is brown’. The Cartesian distance between ‘bear’ and ‘brown’ is small,
indicating those words are correlated. Hence, we want to generate random walks that mostly involve
the nodes around it, and exclude the nodes that are far away. According to the description in the
Node2Vec paper,  to force the random walk return to the previously visited nodes, set the 
p < max(q, 1), and to make sure the random walk stays locally, set q < 1. Thus, we set q = 0.2 and 
p = 0.5. 
Number of walk reduces the bias of random walk and enables different walks. Using the example
from figure 3, if a random walk starts at A,  the number of walk has to be at least 5 so it can explore all
different paths starting from A. We set this number to be 30. We believe this number explores every
branch from any single node, and less the bias due to the randomness. As for the length of walk, we
used 15, an empirical number from the dataset. 
Below are the graphs showing the effect of dimensions on classification accuracy. 

ransomware ��

sms �

label samples 

sms ��

ransomware ��

benign ���

backdoor ��

downloader ��

phishing ��

trojan ��

spyware ��

Node2Vec Hyper-Parameter Selection

have studied 5
relevant parameters: node dimensions, length of walk, number of walk, return parameter and in-out
parameter. 

the 
Word2vec

https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf


The effect of dimension have relatively small effect on the accuracy. Thus, in the following
experiment, we just use dimension = 25. 

Since we are not sure that our labels are 100% correct,  
test our featurization. We perturb some parameters in Node2Vec in a small range

which slightly changes the embedding. If our featurization is correct, the featurized vector of the
same graph using slightly different parameters should be very similar. 
Here is our synthesis method based on parameter tuning. 

: .
Changing the parameters results in a change of the embedding of the nodes, and thus will change the
result for node distance calculation, but Node2Vec with different parameter sets are still exploring the
same graph (ground-truth), so we expect the estimator to classify them as the same. 
By , we are able to produce multiple

 the same graph. The two figures below illustrate the effect of
changing parameters on one particular node in a graph. 

Note: We are using the parameter set discussed in the previous section. 

 

Figure 6. The effect of dimension on classification
accuracy

Figure 7. The effect of dimension on classification
accuracy standard deviation

Validating the New Featurization Approach
we want to create similar graphs based on the

existing graphs to 

There are two parameters in Node2Vec that
can adjust how the algorithm explores the graph the return parameter p and in-out parameter q

adding small (with in ±0.15) disturbance to those p and q
embedding for the nodes from

 

Figure 8. The effect of small disturbance of p on node
embedding

Figure 9. The effect of small disturbance of q on node
embedding



The x axis represents the dimension of the node, and the y axis represents the value we are using for 
p (or q). The color in each block is illustrated on the bar on the right hand side. The more similar the
colors are, the more similar the numeric values are. As illustrated in the graph, with in the same
column, a change in relevant parameters result in a subtle change, which changes the graph feature
in a small scale. If our data makes sense, that the graph is labelled correctly, the results for
classification on graph with slightly different embedding should remain the same. 
Below are the heap maps generated for one sample. Figure 10 changed p and figure 11 changed q. We
sample  in [0.22, 0.28] and removed all the 2.0 distances, because they do not change
with the change of the parameters.

In this experiment, we run binary and multivariate classification on different data set size. We draw
50, 100, 150, 200, 250, 314 samples from our data set and examine the accuracy at
each data size for each method. 
In binary classification, we relabel the data with ‘malicious’ and ‘benign’. 

the value of q

 

Figure 10. Effect of changing p on graph featurization Figure 11. Effect of changing q on graph featurization

Each column of the graph represents the distance of same pair of nodes in the original graph with
slightly different perturbation of p and q.  The color represents the numerical value of the distance.
We can see that with in a column, the change of color is subtle. A small change in the parameters
results in similar featurizations. Thus, the featurization is correct. 

Comparison between previous method and new method on binary and
multivariate classification

cross-validation 



In multivariate classification, we use the labels introduced in the data preparation. 

The convergence is not obvious when the size of the dataset is small.  Based on the assumption that
 removing one node should not affect the category of the graph, we synthesized a larger dataset
based on the original one using the following method: for every graph in the original dataset,
randomly delete a node from the graph, and repeat for 30 times. We use the new 9000 graphs as our
synthetic dataset, and run the same experiments with more samples selected. 

In both experiments done on the original dataset, the accuracy has not yet reach a plateau.
Hypothetically, we we have more data, we should be able to reach a higher accuracy. This is shown
by the experiments done on the synthetic dataset. However, since we are reusing every graph for
30 times, there might be overfitting in the synthetic dataset experiment. 
N

 

Figure 12. Size of dataset vs accuracy in binary
classification

Figure 13. Size of dataset vs accuracy in binary
classification

 

Figure 14. Size of dataset vs accuracy in binary
classification with synthetic data

Figure 15. Size of dataset vs accuracy in multivariate
classification with synthetic data

Experiment limitation:

ode-one-hot encoding and edge-one-hot encoding relies on the number of nodes and edges
contained in the data set. If it is given a graph that contains nodes or edges that is not in the data
set where the estimator is trained, the estimator is not able to make a decision based on the
unseen nodes/edges in the dataset. 



Node2vec-based distance featurization is able to integrate more information into the vector than
the previous method. One must carefully choose the node2vec parameters that accurately reflects
the topological relationships between nodes on the graph. 
Binary classification is more accurate compared to multivariate classification, since it has more
samples per label. We believe the multi-variant classifier can do better with a bigger data set. 
The proposed new featurization approach does slightly worse than the previous method when run
on a medium size real world dataset. There are several possible reasons: (1) The choice of
node2vec hyper-parameters does not accurately reflects the topological features on the graph, (2)
The sample sizes (less than 1K) are too small so that there aren’t sufficiently strong signal for the
classifier to build a good decision tree (3) The sample labels might be inaccurate according to
our analysis and prior experience of using this dataset.
For future work, we can experiment with more parameters in node2vec which may give better
performance. We are mostly concerned with the parameters that affect the random walks, but the
parameters that affect the word embedding for the random walk may also result in a positive
influence of the featurization. We can also evaluate this approach on a different dataset.
Moreover, convolutional layers and relevant deep learning techniques can be used to detect if a
certain patterns of graph structure exists and the way different structures interact with each
other. 

Conclusion


