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As a frequently used control-flow analysis framework, Soot supports various kinds of analysis, for instance,
the call graph and the reaching definition. Those analyses are fundamental to the study of code optimization
and program slicing. And that’s why the Soot has been used so frequently in both the industry and the
research area. 

Since its flow analysis framework has been abstracted into the configuration and options, it assumes its
users to be skilled at static analysis. However, for those who want to deploy Soot as part of their projects but
with little knowledge about the static analysis algorithm, writing a Soot configuration that generates the
output they’re looking for would usually frustrate them. And they usually end up enumerating all possible
configurations manually since they are not sure about which algorithm would produce the correct output. To
tackle this issue, we propose an automated tool that can infer the correct configuration with an input-output
example-based specification written by users so that this tool can generate a configuration to set up the
Soot. This tool will enable users to get started with a working static analyzer prototype in a short time
without much static analysis domain knowledge.

Soot is a Java optimization framework that provides transformation and  for Java code. It’s a
powerful tool that allows programmers to use it as a static analysis tool for Java/Android programs.
However, its problems are also explicit. Firstly, because of its l ,
both inexperienced and seasoned users are prone to make errors when crafting the configuration file.
Besides, it assumes its users possess knowledge of static analysis concepts, so that many of its APIs don’t
have a detailed explanation. And this requirement creates a long learning curve for the newcomers. For the
next section, we will shed more light on this point.

DemoClass.java is our analysis target for the demonstrating purpose of this project. For testing the
correctness in the context of a syntactically complex Java file, we include two overload functions. And what
follows is the code snippet for this target.

public class DemoClass {

    public void overloadTester() {

        overload(1L);

        overload(1.0f);

    } 
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    public void overload(long i) {

        System.out.println("int");

    }

    public void overload(float i) {

        System.out.println("long");

    }

    public static void main(String[] args) {

        DemoClass dc = new DemoClass();

        dc.overloadTester();

    }

}

Here is an example of configuration code of Soot that will analyze 
 and retrieve its call-graph:

     soot.G.reset();

     Options.v().set_process_dir(Collections.singletonList("test-resource"));

     Options.v().set_src_prec(Options.src_prec_class);

     Options.v().set_soot_classpath("test-resource");

     Options.v().set_whole_program(true);

//   Options.v().set_allow_phantom_refs(true);

     Options.v().set_ignore_resolution_errors(true);

     Options.v().set_no_bodies_for_excluded(true);

     Options.v().set_verbose(true);

     Scene.v().addBasicClass("DemoClass", SootClass.SIGNATURES);

     Scene.v().loadClassAndSupport("DemoClass");

     Scene.v().loadNecessaryClasses();

     SootClass testClass = Scene.v().getSootClass("DemoClass");

     PackManager.v().runPacks();

     CallGraph cg = Scene.v().getCallGraph();

For users who don’t have much experience with static analysis with Soot API, this piece of code is hard to
understand. We will explain some details about it below. This code is an example of Soot’s configuration
that generates the call graph of DemoClass.java. With little indicative information about the usage of those
Options, users would found it’s hard to craft a functional configuration file of Soot. And unfortunately, even
if users can understand what this code is doing, the above code doesn’t quite work. After running the
corresponding code, it turns out to end up with following exception.

java.lang.RuntimeException: Phantom refs not allowed

        at soot.SootMethod.setPhantom(SootMethod.java:211)

the DemoClass.class, the byte code of
DemoClass.java, in the test-resource folder
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        at soot.SootResolver.processResolveWorklist(SootResolver.java:158)

        at soot.SootResolver.resolveClass(SootResolver.java:134)

        at soot.Scene.loadClass(Scene.java:942)

        at soot.Scene.loadClassAndSupport(Scene.java:927)

This error is telling the user that his code doesn’t allow the phantom reference option.  To understand the
actual problem here, users will have to understand what phantom reference is. Phantom references are most
often used for scheduling pre-mortem cleanup actions. Unlike any other reference, phantom references are
not automatically cleared by the garbage collector as they are enqueued. An object that is reachable via
phantom references will remain so until all such references are cleared or themselves become unreachable.
Let’s come back to the problem itself. After decompiling this each class and debugging through the call
stack, we found that this error is invoked because every time when the users try to load a new class and
allow the whole-program mode in their configuration, Soot will firstly set each processing class as a
phantom class and then set each method as a phantom method. If the configuration doesn’t include
phantom options, then it’s going to generate the RuntimeException listed above.

In short, the main disadvantage is that Soot only tells users the symptom without explaining why the
configuration should allow the phantom reference, not to say how to fix it automatically. Even though that
reason seems relatively simple, it demands the users to possess sufficient knowledge of phantom reference
and to spend more time debugging. For those who are not proficient static analysis researchers,
encountering this error would be unpleasant. Therefore, we propose to build an automatic inference tool
that treats Soot as a semi-blackbox and try to find the correct configuration by enumeration.

Current soot-skeleton architecture can be split into two separate modes: generator and runner. To begin
with, we build the generator that can take in users’ examples in uniform syntax. Our tool is currently
supporting the example to be either a fragment of the call graph or a fragment of the reaching definition.
After digesting this information, the generator will infer the configuration set-up based on the examples that
users provide. Then the generator will generate the best fitting configuration that fits in users’ examples as
the output. After that, users can take a look at both the generated configuration and the corresponding
output. Take the call graph analysis as an example. If the user finds the call graph output is missing some
edges that he demands, then he is capable of including more example fragments to refine the output
configuration and iterate through this process several times. And his configuration will gradually be refined
during this process. 

Besides, soot-skeleton also provides the runner module. The functionality of this module is based on the
output of the generator. If users finish finding the configuration by running the generator, then they can run
on a different input with the runner using the inferential configuration.

Approach
Architecture



The soot-skeleton validates and infers the users' input. Our tool supports
. For each different kind of input, the user could anticipate

that soot-skeleton's core analyzer to take different approaches to find the configuration. To begin with, soot-
skeleton initially validates that the user data is formatted and store it locally. From there, it will invoke the
core configuration inference engine to determine the best-fit algorithm.

Next, w

 

Figure 1: Architecture Diagram

Algorithm
 two frequently used static analysis

algorithms: the call graph and reaching definition

e will shed more light on the inference algorithm we built. We used enumerative synthesis as our
main inference approach. The enumeration logic is indicated in the above graph. It works as the inference
search engine persistently enumerates the Soot configuration C  from the Soot configuration space,
dispatches C  and user input I  to the algorithm analysis function f(I, config), then retrieves the output O′.
It will keep doing so until either the output O′ passes the validation test or all combinations of configuration
have been used up. Additionally, for the purpose of demonstration, we will use a simplified binary options
case to explain the enumeration ordering. Suppose that we have two configuration options U and V. Each
option has False value and True value respectively. Note that a complete configuration C  needs to have both
U option and V option. Thus, the configuration space has 4 entities in total. Each blue square in Figure 2
represents a complete configuration C . In the enumeration case, the search engine will follow the order that
is indicated by the arrow and evaluate each configuration separately. In this example specifically, it will start
off with all configuration option that has been set to true, and eventually reach the configuration in which
every option has been set to false.



The rank for each configuration option was calculated by the times it has
been utilized in a real configuration set-up. And the weight for each configuration as a whole is the sum of
all the rank for each individual configuration option. More importantly, after the inference engine starts
inferring, it begins with the configuration that has the highest weight. The reason it would start from this
instance of configuration is, conceptually, it has the highest probability to be the best-fitting configuration
because users in the real-world use it most frequently. Once the inference engine has done processing that
configuration, it will proceed to the configuration with the second-highest rank and keep doing so iteratively
until either the output passes the validation test or all combinations of configuration have been used up.
Take the same binary entity in the previous enumeration case as an example. In Figure 3, we can see that
each option was assigned a rank. For the demonstration purpose, the rank is assigned manually. Since we
need to choose the 2 options U and V together to construct a complete configuration, their sum is the
weight for its configuration in the 2-d dimension. And the inference engine will start with the U that has
been set to False and V that has been set to True since this configuration has the highest rank when
compared to any other configuration instance. After processing the first one, it will then apply the
configuration with U that has been set to True and V that has been set to True since this configuration
stands for the configuration with the second-highest rank. In this way, the ranked inference will follow the
order that is indicated by the arrow in the graph. And that ordering is exactly the ranking ordering we
constructed for soot-skeleton.

Link to the Github: https://github.com/MarkGaox/soot-skeleton

This section will discuss further about the actual implementation of soot-skeleton. And we will discuss the
implementation of the generator and the runner respectively.

 

Figure 2: Enumeration Ordering Figure3: Ranking Ordering

In addition to enumeration, we also attempt to use a ranking system for each option or the whole
configuration vector inside the configuration space. For each configuration, the core analyzer of soot-
skeleton contains a predefined function f (C)p  → X  that would take one configuration instance as a input
and output its according rank X . 

Implementation

Generator

https://github.com/MarkGaox/soot-skeleton
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To begin with, let’s explain the essential logic of the generator. To run the generator, users need to provide an
initial parameter and Examples[(I,O)], input-output example pairs, which was indicated in the
architecture Figure 1. And they need to be written in YAML format. After accepting this examples, soot-
skeleton will store the example locally and invoke the configuration inference engine. And the engine will
infer the correct configuration and generate it in the end. Then, let’s explore how the generator was
implemented.

In soot-skeleton, the generator takes the responsibility of inferring the configuration. To begin with, we
implemented the interface to accept the input-output examples pairs and initial parameters. It will take in
both of them in two YAML files and in a specific format. For the examples YAML file, users need to arrange
the example in the format of input and its corresponding outputs which the user is requesting. The following
is the corresponding format.

allClasses:

  < >:

    "<@ input1>": ['<@ output1>', '<@ output2>', ...]

    "<@ input2>": ['<@ output1>', '<@ output2>', ...]

Take the call graph as an example, the input should be filled with the full signature of the caller method and
the output should be specified by the callee’s full method signature which represents the output call graph
statement they’re demanding. Note that the statement could be either the call graph statement or a
reaching definition statement. And the generator will infer the type of example input. As for the initial
parameter, it’s essentially a setup for soot-skeleton. In this file, the users need to express the name of the
example, the relative file path to that example, and the output path. The output path will later be used as the
path for the generated configuration after soot-skeleton finishes inferring. Taking in all this information, the
generator will parse and save them for the purpose of future comparison. Then, it will invoke the
configuration search engine which was denoted as a blue square in Figure 1. 

The configuration inference engine can be understood as a for loop that is written below. It will constantly
enumerate configuration C  from configuration space of Soot. As denoted as the central red square in the
architecture diagram, the algorithm analysis function  implemented as the  of
Soot framework. This function will take in the user input I , that is extracted from the user examples, and the
enumerated configuration C , and, in the end, return the output O  that is produced by Soot framework
under the context of C . Before spawning the final output, the validating function will take control. It will
compare the O  with user example output O. If this O  covers everything that the user is demanding, it
means this configuration instance is correct. Then our tool is going to generate the inferential configuration,
namely C , in the format of YAML and in the given output path. If that’s not the case, the inference engine
will continue enumerating another configuration and test it in the same way until either one configuration
instance passes the validation function or every configuration combination is used up.

for (C ← enumeration(Configuration Space)) {

   if (all(validate(f(I, Config), O) for (I, O ← examples)) {

        return C'

    }

@target name

f (I,Config) is  driver code

′

′ ′

′
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}

return None

The runner part of this project provides a convenient approach for users to test their analysis target after
they use the generator to infer the configuration. This module is denoted as the big green rectangle in the
architecture diagram Figure 1. In order for it to complete the its operation, it takes in two things. Users need
to provide a test input I  and configuration C  that is generated by soot-skeleton previously. Accepting these
information, the runner will dispatch the I and C  into the algorithm analysis function f  to retrieve the
result O . O , in this case, is the static analysis result produced by Soot framework under the context of
configuration C . And in the end, the runner will generate the O  to the users. By using the runner, users no
longer need to write more configuration code in order to obtain the analysis result for the their test input.
And they are able to do further analysis over other targets without writing more code, which reliefs their
burden on doing static analysis.

For this section, we will present the static analysis algorithms we have used in soot-skeleton. Our tool
incorporated two kinds of static analysis algorithms, the call graph analysis, and the reaching definition
analysis. And we will explain them separately.

The call graph is the control flow graph that exists inside a program. It represents the calling relationship
between procedures. The following graph is an example piece of a call graph. Each entity in this graph
represents a procedure, and each edge presents the calling relationship between two procedures. 

Runner

′

′

′ ′

′ ′

Static Analysis Algorithms

Call Graph



For the call graph analysis, our tool supports two frequently used algorithms of Soot, Class Hierarchy
Analysis (CHA) and Soot Pointer Analysis Research Kit (SPARK). CHA is a simple version of call graph
analysis since it assumes every variable can point to any object of that type in a program. This assumption
used by CHA is sound, but, at the same time, might creates an imprecise call graph. Nevertheless, it’s still
valuable to the users since it can be used as a starting foundation for constructing a more precise analysis.
In addition, we also incorporated the SPARK algorithm. SPARK is a more precise algorithm at the cost of
speed when compared with CHA. It’s a framework inside Soot for supporting point-to analysis in Java. It
supports both subset-based and equivalence based points-to analysis and anything in between. And Soot
uses this algorithm as the basis for the call graph construction.

Reaching Definition
Another static analysis algorithm soot-skeleton supports is the reaching definition analysis. Before
explaining this algorithm, we would have to mention the inter-procedural, finite, distributive subset (IFDS)
problems. IFDS problem is an inter-procedural analysis problem with a finite set of data flow facts and
applicable distributive data-flow function over all the facts. And the reaching definition problem is one kind
of IFDS problem. It’s trying to determine what definition of the variable should be available at a given point

 

Figure 4: Call Graph Result Example
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of a program from the hint of the earlier program. The following graph is a simplified example of reaching
definition. In this graph, “In” represents the entry for the program, and “Out” indicates the end of execution.
From this graph, we can see that the code has three points, d1, d2, d3 respectively. The definition of y at d1 is
3. Before the code continues executing to the point of d2, this definition is still reachable. However, after d2
is executed, the definition at d1 is no longer valid since the variable y has a new reachable definition of 4.
When the code continues executing until the point of d3, d1 is still no longer reachable. Therefore d2’s
definition of y is the actual reaching definition at the point of d3. This example is intensively simplified since
in the real world we also need to take care of the control flow when doing a flow-sensitive data flow analysis.

To support this analysis in soot-skeleton, we implemented our own reaching definition transformers to
transform the code into the set of reaching definitions. Besides, we used the IFDS solver that was
implemented in Hero, an extended project of Soot. With these two things, we used the same API of Soot in
the call graph analysis to analyze the reaching definition.

This section will use the example of DemoClass.java that was introduced at the beginning to demonstrate
how soot-skeleton facilitates Soot users with their working efficiency. Assume a user would like to analyze
the call graph for a big Java class. With little knowledge about the static analysis, he is unable to write the
correct Soot configuration code since he doesn’t know which static analysis algorithm would generate the
call graph he’d like to acquire. Fortunately, he is sure about what a part of the full call graph for that
application would look like. Therefore, he would like to use the soot-skeleton to find the Soot configuration
that fits his needs. As described in the previous section, users need to provide examples of the input and
output they are looking for. Suppose that it’s named examples.yaml. And here is a snippet of the
examples.yaml.

 

Figure 5: Reaching Definition Example

Case Study

DemoClass:

  "<DemoClass: void overloadTester()>":

                                        ['<DemoClass: void overload(float)>',

                                         '<DemoClass: void overload(long)>']

  "<DemoClass: void main(java.lang.String[])>":



6

7

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

10

11

This piece reveals several things. It indicates the name of the target should be “DemoClass” and the target
should has methods overloadTester() and main(). The statements that are included in the square bracket
are corresponding call graph relationships that the user intends to acquire in the result output. After
compiling the soot-skeleton, the user could run in the generator mode with following command-line
instruction:

java -jar target/soot-skeleton-1.0-SNAPSHOT-jar-with-dependencies.jar -cfg 

l -exp examples.yaml

The command “-cfg” indicates the option for the initial parameter. The initial parameter, as mentioned
before, includes the path for analysis target and generated configuration. The command “-exp” indicates the
path for the example that the user wants to provide. After running this command, soot-skeleton would take
in the input and enumerate through the configuration space. Eventually, soot-skeleton will output the call
graph and the synthesized configuration result, which are listed below.

<DemoClass: void overloadTester()> : <DemoClass: void overload(float)>

<DemoClass: void overloadTester()> : <DemoClass: void overload(long)>

<DemoClass: void overload(float)> : <java.lang.System: void <clinit>()>

<DemoClass: void overload(float)> : <java.lang.Object: void <clinit>()>

<DemoClass: void main(java.lang.String[])> : <DemoClass: void overloadTester()>

<DemoClass: void main(java.lang.String[])> : <DemoClass: void <init>()>

<DemoClass: void overload(long)> : <java.lang.System: void <clinit>()>

<DemoClass: void overload(long)> : <java.lang.†Object: void <clinit>()>

<DemoClass: void <init>()> : <java.lang.Object: void <init>()>

Configuration Result:
CG_Safe_New_Instance : true

CG_Spark_Verbose : true

CG_Spark_OnFlyCg : true

IGNORE_RESOLUTION : true

VERBOSE : true

NOBODY_EXCLUDED : true

SET_APP : true

CG_Cha_Enabled : true

WHOLE_PROGRAM : true

ALLOW_PHANTOM_REF : true

CG_Spark_Enabled : true

                                        ["<DemoClass: void <init>()>",

                                        "<DemoClass: void overloadTester()>"]

config.y

am

Call Graph Output:



The call graph output is all the relationship that was found under the context of the generated configuration.
And we can see that it contains every example input-output pair the user provides as examples along with
some other call graph relationships. It indicates that this output satisfies users' requirements. Further,
getting such configuration, users can use this configuration to test his non-deterministic big application in
the runner mode of soot-skeleton. If he knows that some other call graph edges are not included in the
result, he could then incorporate these relationships into the examples.yaml and run the generator again to
gain a more accurate configuration. Note that for this example the output configuration is all marked as true
but that’s not always the case. 

The primary goal of soot-skeleton is to automate the process of static analyses by input-output examples.
The large body of soot-skeleton is based on the work of Soot. We used its data-flow analysis framework to
implement this automation tool. The primary difference between our tool and Soot is that we used the
example-driven approach to optimize the user experience of using Soot. With further notice, our example-
driven approach has been widely adopted. Microsoft Excel used this approach to automatically synthesis the
programming on the spreadsheet by letting the users provide the input-output. Perelman used the input-
output strategy to enable end-users to create a program in a domain-specific language. One similarity
sharing between these works is the programmers are set free from writing more code by providing input-
output examples which they intend to accomplish. 

In a similar approach, Kellogg has developed a tool, sassy, to synthesis the static analysis by examples,
which shares a largely similar perspective with this project. We both used the example-driven approach to
help the user quickly adapted themselves to the static analysis. The primary difference is that we define the
domain of the problem (call graph and reaching definition) while his work lets the user define the domain in
order to synthesize the analyses. We believe that in terms of entry-level researchers, soot-skeleton poses
lower barriers to them to do static analysis and that is the essential motivation of soot-skeleton.
Furthermore, since our static analysis is based on Soot ‘s built-in flow-analysis framework, our main interest
is the configuration inference while the sassy let the user provide the configuration. 

Our tool relies on the configuration inference. We utilized two approaches to facilitate our inference as we
described in the implementation section: enumeration synthesis, and ranking synthesis. As far as we know,
soot-skeleton is not the first practice to implement configuration generation with enumerative searching.
Hutter and Hoos developed ParamILS which can search for the configuration of a parametric algorithm with
the user given example algorithm. By letting the user provide the configuration space, ParamILS searches
the whole configuration space and evaluates each combination, which is the same approach we
implemented initially. 

Since our current implementation is limited to Java byte code, one of several objectives we intend to
accomplish in the future is to expand our implementation with versatile input, for instance, the real world
android application, because the baseline of this analysis is already supported by Soot. Furthermore, we also
would like to implement the ranking system we proposed. This would require us to use a benchmark to find

Related Work

On the other hand, the ranking approach we proposed is also applied in the
optimization area. When accelerating the tensor program, researchers uses the similar rank-based objective
to optimize the workload to further accelerate the tensor.

Future Work



the optimal weights. Overall, we are convinced that soot-skeleton can facilitate new-comers of static
analysis over Java to quickly adapt themselves to deploying static analysis into their projects. We are
confident that our approaches can solve the actual problem we mention at the beginning of this paper.
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